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Interfacial kinetic roughening with correlated noise
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Using an alternative scheme to generate correlated noise, we have reexamined issues of stochastic
growth and directed polymer wandering subject to spatially correlated disorder. Our findings explicitly
confirm relevant exponent equalities associated with the Kardar-Parisi-Zhang equation [Phys. Rev.
Lett. 56, 889 (1986)], thereby establishing important universal aspects. In addition, we show that the
basin of attraction of the short-ranged fixed point function certainly extends to correlations falling in-

versely with separation, as previously conjectured.

PACS number(s): 02.50.—r, 05.40.+j, 61.50.Cj

For various stochastic growth models [1], including
Eden clusters, ballistic deposits, and restricted solid-on-
solid (RSOS) algorithms, it is observed that the width
w (L,t) of the kinetically roughened surface evolves in ac-
cordance with the dynamic scaling form

wi(L,)={(h(x,t)—(h(x,)))*) ~L*f (t /L?) ,

where A (x,t) is the interface height at position x and
time ¢, the angular brackets denote the average over x in
the system of size L at time ¢, and finally this quantity is
averaged over the randomness. In addition, for
t <<L*%w(L,t)~t? with B=x/z and for ¢>>L?
w(L,t)~LX. It is believed that a nonlinear stochastic
Burgers equation, proposed by Kardar, Parisi, and Zhang
[2] provides the best continuum description of these vari-
ous growth models. Subsequently, Medina et al. [3] con-
sidered a generalization of the Kardar-Parisi-Zhang
(KPZ) equation subject to correlated noise:

3, (x,t)=vV2h (x,t)+A/2[Vh(x,t) >+ 7(x,t) ,

where 7(x,¢) represents the noise, with spatially correlat-
ed variance:

(p(x,tm(x"t")) ~|x—x'|2~18(t —1¢') .

Following Fourier transformation, the noise correlator
becomes {n(k,t)n(k’,t')) ~k ~2P8(k +k')8(t —t'). Be-
cause the noise has no temporal correlation, Galilean in-
variance is preserved and the exponents obey the charac-
teristic KPZ scaling relation y +z =2 [2-4], leaving only
one independent scaling exponent. There have been
several analytical attempts to pin down the value of the
scaling exponents as a function of the correlation param-
eter p. From a one-loop perturbative dynamical
renormalization-group (RG) analysis, Medina et al. [3]
proposed

1, 0<p=
B(p): _ 1 <
(1+2p)/(5—2p), 1<p=1,

%

which follows, ultimately, from a nonrenormalization
condition on the noise correlator. The same results were
obtained quite independently by Halpin-Healy [5] via
strong-coupling functional RG methods applied to the
equivalent problem of directed polymers in random
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media (DPRM). Since the two methods are entirely com-
plementary, the exactness of the above expression seems
highly likely. Note that both these one-loop RG calcula-
tions yield pc=%, below which the scaling is controlled
by the white-noise fixed point, i.e., B=1 for all p<p,.
The recent KPZ analysis of Frey and Tauber [6] has re-
vealed the nature of the short-ranged fixed point function
to be unaltered by the inclusion of two-loop graphs, leav-
ing robust the value p, =%. In order to check this analyt-
ical prediction, two previous numerical studies [7,8] of
the growth exponents have been made. Nevertheless,
there remains a somewhat disconcerting spread among
the quoted exponent values, as well as some important,
unresolved issues needing clarification. This has motivat-
ed us to undertake our own numerical study of KPZ
kinetic roughening subject to spatially correlated noise.
Our work is of interest because we (i) use a precise
prescription for the nontrivial task of generating ap-
propriate spatial correlations, which we believe to be an
improvement upon past methods [7,8]; (ii) explicitly illus-
trate for the reader (see Fig. 1) the quality of our correlat-
ed noise; (iii) make a point of confirming the characteris-
tic KPZ exponent quality directly (see Fig. 4), thereby
affirming the broader notion of KPZ universality; and,
finally (iv) support the qualitative prediction of the one-
loop dynamic RG (see Fig. 3) while providing strong evi-
dence that the early-time exponent sticks to its uncorre-
lated KPZ value 1 for correlations falling faster than
p =0. This verifies commonly preached [5,9] but hitherto
unproved dogma citing dimensional considerations for
S-function correlated noise.

We note that previous simulations [7,8] generated noise
directly via the relation {(q(k,t)y(k’,t'))~k ~8(k
+k’)8(t —¢'), which is obtained in the continuum limit,
i.e., infinitely large system size. However, for a discrete
lattice of finite size, the above k-space relation can only
generate the noise with the advertised power-law correla-
tion over a very small range in real space. Typically, to
maintain the desired spatial correlation within the size of
the system studied, it was necessary to transform 10°
times more numbers than the lattice size. Here we pro-
pose an alternative algorithm to generate spatially corre-
lated noise. By our algorithm, the noise obeys perfectly
well the power-law correlation for the whole range of the
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lattice. In addition, it respects the periodic boundary
conditions, which is essential in order to compare the
simulation of the lattice to the continuum limit of the
KPZ equation. For our noise construction algorithm on
a discrete lattice, 77(x, t) has the spatial correlation

<1’(x’t)1’(x’,t,))=gp(x —x,)at,t' ’
where
8,(0), x=x'

gp(x —x')= |x _x,|2p_1

lx—x'1=1,2,3,... .
The value of g,(0) must be assigned in this discrete ver-
sion, the natural choice being

g,=2f"aug =2 [ "auur".

After performing the discretized Fourier transformation
on a lattice of size 2N, we get

(n(k, (k' t")) =8 +k,00,1S (k)
with

S,(=-L 'S g (u)e ik
P N, = B :

We can now generate noise satisfying the above relation
in k space as

(k,0)=V'S ,(k)(r, — Lexp(2mid; )
and
n—k,t)=n*k,t),

where 7;,¢, are independent uniform random variables
between O and 1 and k=27 /2N) —N), 27w /2N)(—N
+1),...,(27/2N)(N —1). After Fourier transforma-
tion back to real space, we obtain the noise 7(x,?) of the
desired spatial correlation. In Fig. 1 we show the noise
correlator as a function of spatial separation, compared
with the expected %~ ! behavior. The high quality of
our spatially correlated noise is evident.

We next use this construction in a numerical study of
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FIG. 1. Variance of our spatially correlated noise as com-
pared with the expected behavior: {n(x)n(0))~x2*~'. The
curves, top to bottom, correspond to p=0.4,0.25,0.1, respec-
tively.
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DPRM [10] and RSOS [11] models subject to spatially
correlated noise. For uncorrelated white noise, these two
models are exemplary members of the KPZ universality
class, with well-documented, very reliable scaling proper-
ties [1]. We employ the discretized DPRM on a square
lattice with the transverse direction labeled x and the lon-
gitudinal direction labeled z. At zero temperature, the re-
cursion relation for the minimal energy path reads

E(x,t)=min[E (x,t —1)+n(x,t —1),E(x —1,t —1)
+9(x—1,t —1)+y,E(x +1,t —1)
+yx+1,t—1)+y],

where y denotes the DPRM bending energy and 7(x,?) is
the random site energy [10]. The transverse fluctuation is
defined as Ax (2)>=([x —x,(x,2)]?), where x(x,1) is the
origin of the optimal walk termining at each (x,¢). The
angular brackets denote the average over all positions x
in the system of size L at time ¢. Furthermore, this quan-
tity is averaged over many different realizations of the
random site energies. Ax(z) is expected to scale as t%,
when 1<<t5<<L. Correspondingly, the energy fluctua-
tion AE(t)*={(E(x,t)—{E))?) scales as t2?, when
1<<t®<<L. It is well known [1] that the directed poly-
mer problem can be mapped onto the KPZ equation by a
simple transformation, with the DPRM and kinetic
roughening exponents related via {=1/z and o=, re-
spectively. Consequently, within the DPRM context, the
characteristic KPZ exponent equality reads 0 =2{—1.

Our simulation was performed on a very large system
lattice L =65536=2!%, with the random site energies
generated from our noise construction algorithm, a bend-
ing energy ¥ =0.5, introduced in [10], checked by us, and
statistical averaging performed over 100 runs. The
DPRM exponents § and o were determined by the stan-
dard model, using double logarithmic plots of the trans-
verse (and energy) fluctuations versus time. Note that we
have determined { and @ independently in order to ex-
plicitly check the KPZ scaling relation in the presence of
spatially correlated noise.

We first did the simulation with the uncorrelated site
potential to check Kim’s choice [10] for the bending en-
ergy v and obtained {=0.633+0.005 and »=0.333
+0.003, in excellent agreement with the exact values %
and 1, respectively. Figure 2 shows our DPRM (and
RSOS; see later) results for spatial correlation parameter
p=1%. As appreciated previously [8], this case is crucial
from the point of view of the one-loop dynamic RG cal-
culation. Our numerical results indicate {=0.692+0.005
and ©=0.36410.005 for p=1, the former being con-
sistent with a very robust, earlier finding [8] of {=0.688.
We then varied the spatial correlation of the noise, col-
lecting our results in Fig. 3, which shows our measured
wpprMm as a function of the noise correlation parameter p
along with the theoretical prediction of the
renormalization-group  treatments. In  addition,
we have extended the simulation to the regime of
the noise correlation exponent p<0, with
p=—0.2, —04, —0.5, —1, —1.5, and the exponents §
and o do indeed stick to the exact values 2/3 and 1/3
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FIG. 2. Double log plot of the energy (height) fluctuations of
the DPRM (RSOS) models in the early-time regime of these two
correlated KPZ models. The straight lines indicate wpprm
=0.36410.005 (upper) and Brsos=0.3531+0.005 (lower), re-
spectively, for the value p=} of the spatial correlation parame-
ter.

known rigorously for spatially uncorrelated noise. This
had been asserted previously [5,9] and is numerically
confirmed here. In Fig. 4 we show that our results for
the exponents { and w obey the KPZ scaling relation
2{—w=1 excellently for all values of p. The largest devi-
ation is about 5%. We notice that the deviation increases
for higher p, a consequence of finite size effects.

Next we study the RSOS [11] model subject to spatially
correlated noise. We generate a representation of spatial-
ly correlated noise, which gives the growth probability at
each site x. That is, if the noise 7(x,¢)>0, then
h(x,t)=h(x,t —1)+1 subject to the restriction | (x,t)
—h(x+£1,2)| <1; the growth is rejected if 7(x,t)<O.
In addition, a parallel growth algorithm is used in which
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FIG. 3. KPZ exponents wpprm (A) and Brsos (M) as a func-
tion of the noise correlation parameter p, along the theoretical
prediction (solid line) following from one-loop KPZ dynamic
RG [3] and DPRM functional RG [5] calculations. Our numer-
ics show convincingly that the exponents stick to their uncorre-
lated value } for all p <0. For positive p, corrections to scaling
initiate a clear deviation from the exact RG prediction.

BRIEF REPORTS 32

& DPRM: 2¢-w
05 * RSOS: x/(2-X)-8

0.0 ¢

~0.5 L 1 L L
0.00 o.10 0.20 0.30 0.40 0.50

P

FIG. 4. Test of the KPZ exponent equality for correlated
DPRM (A) and RSOS (M) models. For the former, we expect
©=2§— 1, while the latter should show B=Y/z, where y +z=2.
It is apparent that the fundamental KPZ relation is quite robust
in the presence of spatially correlated noise. Interestingly, it is
well preserved despite the correction to scaling phenomena as-
sociated with p, = 1.

growth is attempted on alternate odd (and even) sublat-
tices on odd (and even) time steps. After each pair of
sublattices is updated, a noise distribution 7(x,?) is gen-
erated. According to the growth rule of the RSOS mod-
el, the correlation of the growth in different sites x,x’ at
the same time slice depends on P(n(x,t)n(x’',z)>0) in-
stead of {n(x,t)n(x’',t)). We have explicitly verified
that, by our way of our noise construction,
P(n(x,t)n(x’,t)>0) also has this corresponding spatial
correlation, i.e.,

P(q(x,t)n(x",)>0)—0.5~|x —x'|%"!

when

(q(x,t)m(x",2)) ~|x —x'|~1

Our RSOS simulation was performed on a system of
size L =65536=2'¢ with 600 time steps, averaged over
100 runs. As a check of the growth algorithm, we first
performed the simulation with the uncorrelated noise and
obtained the early time exponent $=0.33010.003, once
again in excellent agreement with the exact value ;. We
then applied the simulation with the correlated noise for
many values of p. Our findings for p=1 spatially corre-
lated RSOS in the early-time regime are shown alongside
the DPRM results in Fig. 2, strong testimony to correlat-
ed KPZ universality. We have, for this value of the spa-
tial correlation parameter, Brgos=0.3531+0.005. Results
for this early-time exponent as a function of the noise
correlation exponent p are also shown in Fig. 3. Note
that our RSOS values agree best with the prediction of
Medina et al. [3] for small positive p, where it is appears
that the true white-noise fixed-point function maintains
some influence. For spatial correlations larger than
p~=1, however, our RSOS data clearly begin to deviate
from the one-loop dynamical renormalization-group pre-
diction. This can be discerned in previous work [7,8] as
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FIG. 5. Test of the dynamic scaling hypothesis for the RSOS
model subject to spatially correlated noise, with p= {-. We ob-
tain excellent data collapse for system sizes L =64,128,256, as-
suming Yy =0.536=£0.005.

well. By comparison, the DPRM data break off even ear-
lier.

In addition to the direct measurement of the early-time
exponent 3, we have determined Y independently, via the
data collapse of w(L,t), in order to check the scaling rela-
tion B=Yx/z. We simulate the growth with system size
L =64,128,256 in the time duration ¢ = 1000,2000, 5000,
respectively, averaged over 10000 runs. Then, by vary-
ing the value of Y, under the restriction y +z =2, we get
the excellent data collapse, affirmation of the dynamic
scaling hypothesis for KPZ subject to correlated noise.
Figure 5 illustrates our findings for p=4. Note that, in
the absence of the KPZ nonlinearity A=0, it is possible
to calculate analytically the full scaling function in closed
form, including the dependence on the spatial correlation
parameter p [12]. In Fig. 4 we show that our results for
the RSOS growth exponents, which reveal that they obey
the relation B=y/z, with z+y=2, rather well for all
values of p, prove that spatially correlated RSOS still lies
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within the realm of KPZ. We note that the discrepancy
here for RSOS, as for the DPRM, increases with the p
value, although somewhat more modestly.

In conclusion, we propose our own noise construction
algorithm that generates correlations obeying the desired
power laws throughout the entire system, while respect-
ing imposed periodic boundary conditions. Extensive nu-
merical studies of DPRM and RSOS growth models sub-
ject to spatially correlated noise have been undertaken.
We have measured the growth exponents independently,
i.e., £ and o for DPRM, Y and B in RSOS, as functions of
the noise correlation parameter p. Interestingly, we also
simulate the regime p <0. As a critical feature, we have
explicitly verified the characteristic KPZ exponent rela-
tion in the presence of spatially correlated noise,
confirming broader utility of the KPZ equation. More-
over, for p <0, we provide strong evidence that scaling
indices most certainly stick to values directed by the
white-noise fixed-point function [3], supporting earlier
suspicions [5,9]. Finally, as in past numerical efforts on
spatially correlated RSOS [7] and DPRM [8] models, we
find modest disagreements with the one-loop dynamic
and functional RG predictions as p—»%. Indeed, since
the short-ranged fixed point function loses stability at
p. =1, where an irrelevant operator becomes marginal, it
is perhaps likely that numerically measured exponents
are effective and not truly asymptotic. Indeed, allowing
for a logarithmic correction to the anticipated power law
at p, =1 leads to a fit of comparable quality as in Fig. 4.
Work is presently in progress to understand more gen-
erally correction to scaling phenomena in this context.

Note added in proof: Following acceptance of this pub-
lication, we became aware of related independent work of
Makse et al. [13] for generating high quality correlated
noise.
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